Entropy and Compression Capture Different Complexity Features: The Case of Fetal Heart Rate
نویسندگان
چکیده
Entropy and compression have been used to distinguish fetuses at risk of hypoxia from their healthy counterparts through the analysis of Fetal Heart Rate (FHR). Low correlation that was observed between these two approaches suggests that they capture different complexity features. This study aims at characterizing the complexity of FHR features captured by entropy and compression, using as reference international guidelines. Single and multi-scale approaches were considered in the computation of entropy and compression. The following physiologic-based features were considered: FHR baseline; percentage of abnormal long (%abLTV) and short (%abSTV) term variability; average short term variability; and, number of acceleration and decelerations. All of the features were computed on a set of 68 intrapartum FHR tracings, divided as normal, mildly, and moderately-severely acidemic born fetuses. The correlation between entropy/compression features and the physiologic-based features was assessed. There were correlations between compressions and accelerations and decelerations, but neither accelerations nor decelerations were significantly correlated with entropies. The %abSTV was significantly correlated with entropies (ranging between −0.54 and −0.62), and to a higher extent with compression (ranging between −0.80 and −0.94). Distinction between groups was clearer in the lower scales using entropy and in the higher scales using compression. Entropy and compression are complementary complexity measures.
منابع مشابه
A New Approach to Detect Congestive Heart Failure Using Symbolic Dynamics Analysis of Electrocardiogram Signal
The aim of this study is to show that the measures derived from Electrocardiogram (ECG) signals many a time perform better than the same measures obtained from heart rate (HR) signals. A comparison was made to investigate how far the nonlinear symbolic dynamics approach helps to characterize the nonlinear properties of ECG signals and HR signals, and thereby discriminate between normal and cong...
متن کاملA New Approach to Detect Congestive Heart Failure Using Symbolic Dynamics Analysis of Electrocardiogram Signal
The aim of this study is to show that the measures derived from Electrocardiogram (ECG) signals many a time perform better than the same measures obtained from heart rate (HR) signals. A comparison was made to investigate how far the nonlinear symbolic dynamics approach helps to characterize the nonlinear properties of ECG signals and HR signals, and thereby discriminate between normal and cong...
متن کاملn-Order and maximum fuzzy similarity entropy for discrimination of signals of different complexity: Application to fetal heart rate signals
This paper presents two new concepts for discrimination of signals of different complexity. The first focused initially on solving the problem of setting entropy descriptors by varying the pattern size instead of the tolerance. This led to the search for the optimal pattern size that maximized the similarity entropy. The second paradigm was based on the n-order similarity entropy that encompass...
متن کاملMultiscale Entropy Analysis of Complex Heart Rate Dynamics: Discrimination of Age and Heart Failure Effects
Quantifying the complexity of physiologic time series has been of considerable interest. Several entropybased measures have been proposed, although there is no straightforward correspondence between entropy and complexity. These traditional algorithms may generate misleading results because an increase in system entropy is not always associated with an increase in its complexity, and because th...
متن کاملA PCA/ICA based Fetal ECG Extraction from Mother Abdominal Recordings by Means of a Novel Data-driven Approach to Fetal ECG Quality Assessment
Background: Fetal electrocardiography is a developing field that provides valuable information on the fetal health during pregnancy. By early diagnosis and treatment of fetal heart problems, more survival chance is given to the infant.Objective: Here, we extract fetal ECG from maternal abdominal recordings and detect R-peaks in order to recognize fetal heart rate. On the next step, we find a be...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Entropy
دوره 19 شماره
صفحات -
تاریخ انتشار 2017